
Hikmat Farhat Operating Systems

Process Synchronization

n Background

n The Critical-Section Problem

n Synchronization Hardware

n Semaphores

n Classical Problems of Synchronization

Hikmat Farhat Operating Systems

Background

n Concurrent access to shared data may result
in data inconsistency.

n Maintaining data consistency requires
mechanisms to ensure the orderly execution
of cooperating processes.

Hikmat Farhat Operating Systems

Bounded-Buffer

n Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int counter = 0;

Hikmat Farhat Operating Systems

Bounded-Buffer

n Producer process

item nextProduced;
while (1) {

while (counter == BUFFER_SIZE)
; /* do nothing */

insert_item(nextProduced);
counter++;

}

Hikmat Farhat Operating Systems

Bounded-Buffer

n Consumer process
item nextConsumed;

while (1) {
while (counter == 0)

; /* do nothing */
nextConsumed =remove_item();
counter--;

}

Hikmat Farhat Operating Systems

Bounded Buffer

n The statements

counter++;
counter--;

must be performed atomically.

n Atomic operation means an operation that
completes in its entirety without interruption.

Hikmat Farhat Operating Systems

Bounded Buffer

n The statement “count++” may be implemented
in machine language as:
register1 = counter

register1 = register1 + 1
counter = register1

n The statement “count—” may be implemented
as:
register2 = counter
register2 = register2 – 1
counter = register2

Hikmat Farhat Operating Systems

Bounded Buffer

n If both the producer and consumer attempt to
update the buffer concurrently, the assembly
language statements may get interleaved.

n Interleaving depends upon how the producer
and consumer processes are scheduled.

Hikmat Farhat Operating Systems

Bounded Buffer

n Assume counter is initially 5. One interleaving of
statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)
producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

n The value of count may be either 4 or 6, where the correct
result should be 5.

Hikmat Farhat Operating Systems

Race Condition

n Race condition: The situation where several
processes access – and manipulate shared
data concurrently. The final value of the
shared data depends upon which process
finishes last.

n To prevent race conditions, concurrent
processes must be synchronized.

Hikmat Farhat Operating Systems

The Critical-Section Problem

n n processes all competing to use some shared
data

n Each process has a code segment, called
critical section, in which the shared data is
accessed.

n Problem – ensure that when one process is
executing in its critical section, no other process
is allowed to execute in its critical section.

Hikmat Farhat Operating Systems

Solution to Critical-Section
Problem

1. Mutual Exclusion. If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections.

2. Progress. If no process is executing in its critical section
and there exist some processes that wish to enter their
critical section, then the selection of the process that will
enter the critical section next cannot be postponed
indefinitely.

3. Bounded Waiting. No process should have to wait
forever to enter its critical region
� Assume that each process executes at a nonzero

speed
� No assumption concerning relative speed of the n

processes.

Hikmat Farhat Operating Systems

Initial Attempts to Solve
Problem

n Only 2 processes, P0 and P1

n General structure of process Pi (other process Pj)
do {

entry section

critical section
exit section

remainder section
} while (1);

n Processes may share some common variables to
synchronize their actions.

Hikmat Farhat Operating Systems

Algorithm 1

n Shared variables:
n int turn;

initially turn = 0
n turn = i fi Pi can enter its critical section

n Process Pi

do {
while (turn != i) ;

critical section
turn = j;

remainder section
} while (1);

n Satisfies mutual exclusion, but not progress
n Consider the case when process P0 finishes its critical

section: turn=1.
n Suppose that P0 needs to enter its critical region again.
n It has to wait for P1, which may be indefinitely!

Hikmat Farhat Operating Systems

Algorithm 2
n Shared variables

n boolean flag[2];
initially flag [0] = flag [1] = false.

n flag [i] = true fi Pi ready to enter its critical section
n Process Pi

do {
flag[i] := true;
while (flag[j]) ;

critical section
flag [i] = false;

remainder section
} while (1);

n Satisfies mutual exclusion, but not progress requirement.
n Suppose that P0 executes flag[0]=true and then a context

switch occurs: P1 starts executing, sets flag[1]=true.
n At this point flag[0]=flag[1]=true and the two processes will

loop forever.

Hikmat Farhat Operating Systems

Algorithm 3
n Combined shared variables of algorithms 1 and

2.
n Process Pi

do {
flag [i]:= true;
turn = j;
while (flag [j] and turn = j) ;

critical section
flag [i] = false;

remainder section
} while (1);

n Meets all three requirements; solves the critical-
section problem for two processes.

Hikmat Farhat Operating Systems

Synchronization Hardware

n Test and modify the content of a word
atomically

boolean TestAndSet(boolean &target) {

boolean rv = target;

target = true;

return rv;

}

Hikmat Farhat Operating Systems

Mutual Exclusion with Test-and-Set

n Shared data:
boolean lock = false;

n Process Pi

do {
while (TestAndSet(lock)) ;

critical section
lock = false;

remainder section
}

Hikmat Farhat Operating Systems

Synchronization Hardware

n Atomically swap two variables.

void Swap(boolean &a, boolean &b) {

boolean temp = a;

a = b;

b = temp;

}

Hikmat Farhat Operating Systems

Mutual Exclusion with Swap
n Shared data (initialized to false):

boolean lock;
boolean waiting[n];

n Process Pi

do {
key = true;
while (key == true)

Swap(lock,key);
critical section

lock = false;
remainder section

}

Hikmat Farhat Operating Systems

Semaphores

n Synchronization tool that does not require busy
waiting.

n Semaphore S – integer variable
n can only be accessed via two indivisible (atomic)

operations
wait (S):

while S£ 0 do no-op;
S--;

signal (S):
S++;

Hikmat Farhat Operating Systems

Critical Section of n Processes

n Shared data:
 semaphore mutex; //initially mutex = 1

n Process Pi:

do {
 wait(mutex);
 critical section

 signal(mutex);
 remainder section
} while (1);

Hikmat Farhat Operating Systems

Semaphore Implementation

n Define a semaphore as a record

typedef struct {

 int value;
 struct process *L;
} semaphore;

n Assume two simple operations:

n block suspends the process that invokes it.

n wakeup(P) resumes the execution of a blocked
process P.

Hikmat Farhat Operating Systems

Implementation
n Semaphore operations now defined as

wait(S):
S.value--;
if (S.value < 0) {

add this process to S.L;
block;

}
signal(S):

S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

Hikmat Farhat Operating Systems

Semaphores & Scheduling

n One simple implementation would be to
wake-up the processes in a first come first
serve basis.

n Is it optimal?
n Suppose that processes P1,P2 and P3 are

waiting on a semaphore with P3 having the
highest priority.

n In FCFS P3 has to wait for P1 and P2 to
finish.

Hikmat Farhat Operating Systems

Semaphore as a General
Synchronization Tool

n Execute B in Pj only after A executed in Pi

n Use semaphore flag initialized to 0

n Code:

Pi Pj

 M M

A wait(flag)

signal(flag) B

Hikmat Farhat Operating Systems

Deadlock and Starvation
n Deadlock – two or more processes are waiting

indefinitely for an event that can be caused by only
one of the waiting processes.

n Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

 M M
signal(S); signal(Q);
signal(Q) signal(S);

n Starvation – indefinite blocking. A process may
never be removed from the semaphore queue in
which it is suspended.

Hikmat Farhat Operating Systems

Multiple Access To Resources

n Semaphores can be used in a more general
way.

n Suppose that a system has two printers.

n Processes P1, P2 and P3 need to printer and
don’t care which printer to use.

n Define:

 semaphore p=2

Hikmat Farhat Operating Systems

n Assume that they request the printer in order
then

 P1:

 wait(p); /* p=1 , doesn’t block*/

 P2:

 wait(p); /* p=0, doesn’t block */

P3:

 wait(p); /* p=-1, blocks */

Hikmat Farhat Operating Systems

Classical Problems of
Synchronization

n Bounded-Buffer Problem

n Readers and Writers Problem

n Dining-Philosophers Problem

Hikmat Farhat Operating Systems

Bounded-Buffer Problem

n Shared data

semaphore full, empty, mutex;

Initially:

full = 0, empty = n, mutex = 1

Hikmat Farhat Operating Systems

Bounded-Buffer Problem
Producer Process

do {
…

produce an item
 …

wait(empty);
wait(mutex);

 …
add item to buffer

 …
signal(mutex);
signal(full);

} while (1);

Hikmat Farhat Operating Systems

Bounded-Buffer Problem
Consumer Process

do {
wait(full)
wait(mutex);

 …
remove an item from buffer

 …
signal(mutex);
signal(empty);

} while (1);

Hikmat Farhat Operating Systems

Readers-Writers Problem

n Shared data accessed by many processes.

n Some processes read and some write.

n While a process is writing no other process
can read or write.

n If a process is reading other processes can
read also

n Typical scenario: database access.

Hikmat Farhat Operating Systems

Readers-Writers Problem

n Shared data

semaphore mutex, wrt;

Initially

mutex = 1, wrt = 1, readcount = 0
n mutex used for exclusive access to readcount.
n wrt used for exclusive access to file: writer or

many readers

Hikmat Farhat Operating Systems

Readers-Writers Problem Writer
Process

wait(wrt);
 …

writing is performed
no writers or readers can access file

 …
signal(wrt);

Hikmat Farhat Operating Systems

Readers-Writers Problem Reader
Process

wait(mutex);/* get exclusive access to readcount */
readcount++;
if (readcount == 1)/* first reader block writers */

 wait(wrt);
signal(mutex);/* release lock on readcount */

 …
reading is performed
 …
wait(mutex);/* get exclusive access to readcount */
readcount--;
if (readcount == 0)
 signal(wrt);/* last reader unblock writing */

signal(mutex);/* release lock on readcount */

Hikmat Farhat Operating Systems

Dining-Philosophers Problem

n Each philosopher needs 2 chopsticks to eat.
Shared data

semaphore chopstick[5];
Initially all values are 1

Hikmat Farhat Operating Systems

Dining-Philosophers Problem
n Philosopher i:

do {
wait(chopstick[i])
wait(chopstick[(i+1) % 5])

 …
eat
 …

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

 …
think
 …

} while (1);

Hikmat Farhat Operating Systems

n Suppose that all five philosophers acquire
their left chopsticks simultaneously. What
happens in that case ?

n A deadlock will occurs since no philosopher
can acquire a right chopstick to eat.

Hikmat Farhat Operating Systems

Solution 1

n Suppose that we require that after acquiring a
left chopstick a philosopher checks to see if
the right is available.

n If not he releases the left chopstick.

n This could lead to starvation if all five
philosophers are in sync.

Hikmat Farhat Operating Systems

Solution 2

n A solution to the previous problem is to
protect the action of picking up a chopstick by
a semaphore.

n If a philosopher acquires the mutex no other
philosopher can pick up a left chopstick.

Hikmat Farhat Operating Systems

Philosopher i:
do {

wait(mutex);
wait(chopstick[i]);
wait(chopstick[(i+1) % 5]);

 …
eat
 …

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);
signal(mutex);

 …
think
 …

} while (1);

Hikmat Farhat Operating Systems

n While the previous solution works, only one
philosopher can be eating.

n With five chopsticks it should be possible for
2 philosopher eating simultaneously.

n We will give a solution using monitors.

Hikmat Farhat Operating Systems

Monitors

n High-level synchronization construct that allows the
safe sharing of an abstract data type among
concurrent processes.

n A monitor prohibits concurrent access to all
procedures defined within the monitor.

monitor monitor-name
{

shared variable declarations
procedure body P1 (…) {

. . .
}
procedure body Pn (…) {

 . . .
}
{

initialization code
}

}

Hikmat Farhat Operating Systems

Schematic View of a Monitor

Hikmat Farhat Operating Systems

Monitors

n To allow a process to wait within the monitor, a
condition variable must be declared, as

condition x, y;
n Condition variable can only be used with the

operations wait and signal.
n The operation

x.wait();
means that the process invoking this operation
is suspended until another process invokes

x.signal();
n The x.signal operation resumes exactly one

suspended process. If no process is suspended,
then the signal operation has no effect.

Hikmat Farhat Operating Systems

Monitor With Condition Variables

Hikmat Farhat Operating Systems

Dining Philosophers Example

monitor dp
{

enum {thinking, hungry, eating} state[5];
condition self[5];
void pickup(int i); // following slides
void putdown(int i); // following slides
void test(int i); // following slides
void init() {

for (int i = 0; i < 5; i++)
state[i] = thinking;

}
}

Hikmat Farhat Operating Systems

Dining Philosophers

void pickup(int i) {
state[i] = hungry;
test(i);
if (state[i] != eating)

self[i].wait();
}

void putdown(int i) {
state[i] = thinking;
// test left and right neighbors
test((i+4) % 5);
test((i+1) % 5);

}

Hikmat Farhat Operating Systems

Dining Philosophers

void test(int i) {
if ((state[(I + 4) % 5] != eating) &&
 (state[i] == hungry) &&
 (state[(i + 1) % 5] != eating)) {

state[i] = eating;
self[i].signal();

}
}

